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Abstract 

Our project studies the application of 

reinforcement learning (RL) techniques, 

Self-Critical Sequence Training (SCST) 

and Proximal Policy Optimization (PPO), 

to boost text summarization performance 

on the SAMSum dataset. We compare the 

effectiveness of these RL fine-tuning 

methods against a baseline sequence-to-

sequence model using the BLEU score as 

the primary evaluation metric. Our 

experiments demonstrate that both SCST 

and PPO significantly improve 

summarization quality, with PPO (batch 

size 8) achieving the highest BLEU score 

of 0.9246, surpassing the base model by 

5.42%. These findings highlight the 

effectiveness of RL-based fine-tuning in 

producing more coherent and human-like 

summaries. We also discuss the role of 

batch size and suggest future directions, 

which include generalization to other 

domains, and integration with pretrained 

transformer models. 

1 Introduction 

With the rapid increase in digital content there is a 

lot of information out there, which creates a need 

for tools that can effectively summarize large 

amounts of text. Text summarization plays an 

important role across many domains, such as news, 

customer service, and science, where quick 

understanding of large volumes of text is highly 

desired. Among available methods, extractive 

summarization, i.e., pulling key sentences directly 

from source text, often outputs in garbled results. 

Abstractive summarization, however, rephrases 

content naturally, making it more desirable but also 

more challenging. 

Most state-of-the-art abstractive summarization 

models are trained using supervised learning, 

where token-level losses like cross-entropy are 

optimized. However, these objectives often poorly 

align with the metrics used for evaluating summary 

quality, such as BLEU or ROUGE. This mismatch 

can lead to outputs that are grammatically correct 

but semantically weak or uninformative. 

Reinforcement learning (RL) offers a promising 

solution by enabling direct optimization for these 

end-goal evaluation metrics. While RL has been 

explored in large transformer-based models, its 

impact on smaller, resource-efficient architectures 

remains underexplored. 

In this project, we focus on the task of single-turn 

abstractive dialogue summarization using the 

SAMSum dataset. Each input consists of a multi-

turn dialogue involving two or more speakers, and 

the goal is to produce a concise, readable summary 

that accurately reflects the key points of the 

conversation. As a baseline, we employ a GRU-

based sequence-to-sequence model. To improve its 

performance, we explore two reinforcement 

learning-based fine-tuning methods: Self-Critical 

Sequence Training (SCST) and Proximal Policy 

Optimization (PPO)[8]. We evaluate model 

performance using the BLEU score, which 

assesses the degree of n-gram overlap between the 

generated summaries and human-written 

references. The research question we address is: 

Can RL-based fine-tuning (via SCST and PPO) 

improve the quality of abstractive dialogue 

summaries produced by a GRU-based model, as 

measured by BLEU scores? This work aims to 

explore how RL can enhance summary quality 

beyond what is achieved by standard supervised 

baselines on a constrained, well-defined task. 

2 Related Work 

Paulus et al. (2017)[1]: This work introduced a 

model that combines supervised learning with RL, 

specifically using the REINFORCE algorithm, to 

optimize ROUGE scores. Their approach also 

incorporated intra-attention mechanisms to 
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reduce repetition in generated summaries. 

Building upon this, our work explores alternative 

RL algorithms, SCST and PPO, and evaluates 

their effectiveness using BLEU scores, providing 

a different perspective on optimizing 

summarization quality. 

Keneshloo et al. (2019)[2]: Keneshloo et al. 

addressed the challenge of generalizing 

summarization models to new datasets by 

proposing a self-critical policy gradient approach 

within a transfer learning framework. Their 

method demonstrated improved generalization 

across various datasets. In contrast, our research 

focuses on enhancing summary quality within a 

specific dataset (SAMSum) by fine-tuning models 

using RL techniques, without explicitly targeting 

cross-domain generalization. 

Farooq (2025)[3]: Farooq introduces a T5-based 

summarization model with hierarchical RL to 

adapt summary lengths based on time constraints. 

They compare PPO, A2C, and SAC on metrics 

like ROUGE and BERTScore. While their 

approach targets adaptive summary lengths and 

efficiency, our focus is on improving summary 

quality through RL fine-tuning with different 

reward signals, without time-based constraints. 

Pulari et al. (2025)[4]: They propose using RL with 

human feedback and prompting techniques to 

enhance news summarization. Their approach 

introduces a new evaluation metric, H-Rouge, and 

emphasizes human-guided training 

improvements. Unlike their work, which uses 

human feedback for training, our study focuses on 

automatic rewards (e.g., BLEU) and explores a 

range of RL-based fine-tuning methods to 

improve summarization performance. 

3 Methodology 

3.1 Dataset and Preprocessing 

We used the SAMSum Dataset (∼16,000 

dialogue-summary pairs from Kaggle), 

comprising real-life conversations and human-

written summaries, ideal for training and 

evaluating abstractive summarization models. 

Data Cleaning: We removed rows with missing 

values or duplicate dialogues using a custom 

DatasetCleaner class for consistent preprocessing. 

Text Normalization: Informal chat-style data was 

standardized by: 

• Lowercasing all text 

• Removing HTML tags and URLs 

• Expanding contractions and chat 

abbreviations (e.g., “I’m” - “I am”) 

• Removing emojis 

• Inserting <start> and <end> tokens in 

summaries to aid sequence modeling 

Tokenization & Padding: A custom tokenizer 

trained on both dialogues and summaries mapped 

text to integer indices, using a dedicated <OOV> 

token for unknown words. Sequences were post-

padded to fixed lengths based on maximum 

observed dialogue/summary lengths, ensuring 

uniform input/output shapes for batch training. 

3.2 Model Development 

Model architecture: Our approach uses an 

encoder-decoder framework enhanced with an 

attention mechanism: 

• Encoder: A two-layer GRU processes 

embedded dialogue tokens to produce 

contextual hidden states. 

• Decoder: A two-layer GRU generates the 

summary, using the encoder’s context 

and its internal state at each step. 

• Attention: A multi-head attention 

mechanism helps the decoder focus on 

semantically relevant encoder outputs 

during generation. 

• Output Layer: A fully connected linear 

layer with softmax produces token 

probabilities over the vocabulary. 

Training setup: The model is trained using cross-

entropy loss, appropriate for multi-class 

classification at each time step of the sequence. 

The Adam optimizer is employed with an initial 

learning rate of 0.001 for adaptive learning during 

training. Training is conducted with batch sizes of 

8 and 16 for experimental purposes. The model 

was trained for 5 epochs, with both training and 

validation loss monitored. Training was 

performed using PyTorch with support for multi-

GPU acceleration via DataParallel. To prevent 

overfitting and enhance generalization, an early 

stopping mechanism was implemented. If 

validation loss did not improve beyond a 
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minimum delta of 0.001 over 3 consecutive 

epochs, training was halted early. 

3.3 Reinforcement Learning Fine-Tuning 

To improve summary quality beyond cross-

entropy optimization, we fine-tuned the 

pretrained model using SCST and PPO, with 

ROUGE-L as the reward signal to promote 

structural alignment with reference summaries. 

Summaries were generated using greedy 

decoding. In SCST, the baseline reward was 

derived from the model's own greedy output. PPO 

was initialized with the pretrained model and 

updated using clipped reward-weighted feedback 

for stable learning. In both strategies, cross-

entropy loss was retained to preserve fluency 

alongside informativeness. Both RL methods 

were tested with batch sizes 8 and 16 to evaluate 

stability and reward learning efficiency. 

3.4 Evaluation Setup 

We evaluated all models using the SAMSum 

validation split for consistency. While ROUGE-L 

was used as the reward during RL, BLEU score 

served as the final evaluation metric due to its focus 

on n-gram precision, offering complementary 

insights into generation quality. We compared 

BLEU scores across: 

• The baseline GRU-attention model 

• SCST-enhanced model 

• PPO-enhanced model 

Each RL variant was evaluated at both batch sizes, 

with the best-performing configuration reported. 

Training stability was assessed via reward trends 

and validation loss across epochs. Our goal was to 

observe increased BLEU scores after finetuning 

the model using SCST and PPO. 

4 Experiments 

The goal of our experiments is to evaluate the 

effectiveness of RL fine-tuning techniques, SCST 

and PPO, in improving a base model. All models 

were evaluated using the BLEU score on the 

SAMSum dataset, a benchmark for abstractive 

summarization of dialogue. 

4.1 Experimental Setup 

• Base model: A GRU-based sequence-to-

sequence model with attention, trained 

with cross-entropy loss. 

• RL fine-tuning methods: 

o SCST: A policy gradient method 

that uses a baseline (greedy-

decoded summary) to reduce 

variance in reward optimization, 

with ROUGE-L as the reward 

function. 

o PPO: A more stable policy 

optimization method using a 

clipped surrogate objective. 

• Batch sizes: Fine-tuning was conducted 

with batch sizes of 8 and 16 to assess 

performance sensitivity. 

• Evaluation metric: BLEU score was used 

to assess final summary quality on the 

validation set, as it captures n-gram 

overlap between generated and reference 

summaries. Summaries were generated 

via greedy decoding for consistency. 

4.2 Results 

 

From the above graph, where the GRU models are 

trained only using supervised constraints, the 

model with batch size 8 demonstrates slightly 

better generalization, achieving a lower final test 

loss (0.0186) compared to the batch size 16 model 

(0.0204), though both converge effectively. 

 

From the graphs above, we can see that PPO fine-

tuning, especially with batch size 8, led to the 

steepest drop in CE loss early on. SCST fine-

tuning showed more stable but smaller 

improvements, with batch size 8 converging more 
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smoothly. Overall, PPO yielded more aggressive 

CE loss reduction, while SCST offered steadier 

optimization. 

Expt Batch 

Size 

Base 

BLEU 

RL 

BLEU 

Improvement 

SCST 8 0.8800 0.9190 +4.43% 

SCST 16 0.8382 0.8981 +7.14% 

PPO 8 0.8771 0.9246 +5.42% 

PPO 16 0.8540 0.9024 +5.66% 
 

Both SCST and PPO led to significant 

performance gains. The PPO model with batch 

size 8 achieved the highest BLEU score of 0.9246, 

while SCST with batch size 16 showed the 

greatest relative improvement over its base. 

However, models fine-tuned with batch size 8 

consistently outperformed those trained with 

batch size 16, suggesting smaller batch sizes yield 

better generalization in this context. 

4.3 Findings 

• RL fine-tuning consistently improved 

summarization performance across all 

configurations. 

• PPO (batch size 8) yielded the best 

absolute BLEU score, while SCST (batch 

size 16) had the highest relative gain. 

• Smaller batch sizes were more effective, 

emphasizing the importance of tuning RL 

hyperparameters like batch size. 

4.4 Limitations: 

• RL-based fine-tuning increases training 

time and computational overhead. 

• Model performance was sensitive to 

batch size, indicating a need for careful 

tuning. 

• The study is limited to the SAMSum 

dataset, further evaluation on diverse 

datasets is required to confirm 

generalizability. 

• Overfitting risk may be higher with 

smaller batches, additional validation on 

held-out test sets is recommended. 

5 Conclusion 

This study evaluated the impact of reinforcement 

learning (RL) methods, Self-Critical Sequence 

Training (SCST) and Proximal Policy 

Optimization (PPO), on improving the 

performance of a base text summarization model 

using the SAMSum dataset. The experimental 

results clearly show us that both RL approaches 

notably boost summarization quality, as indicated 

in BLEU score improvements over the baseline. 

Our findings acknowledge the effectiveness of 

using reinforcement learning in guiding the 

summarization model toward generating more 

coherent and human-like outputs. 

The experiments also revealed that smaller batch 

sizes tend to yield better performance, potentially 

due to improved generalization. Overall, this 

work demonstrates the value of reinforcement 

learning in fine-tuning summarization models and 

opens up new directions for enhancing text 

generation tasks. 

Future Work: 

While SCST and PPO improved summarization 

quality on the SAMSum dataset, several 

directions remain for further exploration: 

• Generalization across tasks and domains: 

Applying these RL techniques to 

extractive summarization and other 

datasets can help evaluate their 

robustness and adaptability. 

• Training efficiency: Given the 

computational cost of PPO, future work 

could explore faster methods like actor-

critic models, curriculum learning, or 

multi-agent RL. 

• Evaluation: To depict summary quality in 

a better way, future studies would include 

ROUGE, METEOR, and human 

evaluations alongside BLEU. 

• Using pretrained models: Combining RL-

based fine-tuning with pretrained 

transformers like T5 or BART could 

boost performance by integrating general 

language understanding with task-

specific optimization. 

In conclusion, this study demonstrates that 

reinforcement learning, particularly SCST and 

PPO, offers a promising path for advancing text 

summarization. With further exploration and 

optimization, these techniques can significantly 

contribute to more effective and adaptable 

summarization systems. 
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